Evidence for the role of a Na(+)/HCO(3)(-) cotransporter in trout hepatocyte pHi regulation.
نویسندگان
چکیده
The mechanisms of intracellular pH (pHi) regulation were examined in hepatocytes of the rainbow trout Oncorhynchus mykiss. pHi was monitored using the pH-sensitive fluorescent dye BCECF, and the effects of various media and pharmacological agents were examined for their influence on baseline pHi and recovery rates from acid and base loading. Rates of Na(+) uptake were measured using (22)Na, and changes in membrane potential were examined using the potentiometric fluorescent dye Oxonol VI. The rate of proton extrusion following acid loading was diminished by the blockade of either Na(+)/H(+) exchange (using amiloride) or anion transport (using DIDS). The removal of external HCO(3)(-) and the abolition of outward K(+) diffusion by the channel blocker Ba(2+) also decreased the rate of proton extrusion following acid load. Depolarization of the cell membrane with 50 mmol l(-)(1) K(+), however, did not affect pHi. The rate of recovery from base loading was significantly diminished by the blockade of anion transport, removal of external HCO(3)(-) and, to a lesser extent, by blocking Na(+)/H(+) exchange. The blockade of K(+) conductance had no effect. The decrease in Na(+) uptake rate observed in the presence of the anion transport blocker DIDS and the DIDS-sensitive hyperpolarization of membrane potential during recovery from acid loading suggest that a Na(+)-dependent electrogenic transport system is involved in the restoration of pHi after intracellular acidification. The effects on baseline pHi indicate that the different membrane exchangers are tonically active in the maintenance of steady-state pHi. This study confirms the roles of a Na(+)/H(+) exchanger and a Cl(-)/HCO(3)(-) exchanger in the regulation of trout hepatocyte pHi and provides new evidence that a Na(+)/HCO(3)(-) cotransporter contributes to pHi regulation.
منابع مشابه
Regulation of intracellular pH in anoxia-tolerant and anoxia-intolerant teleost hepatocytes.
Mechanisms of intracellular pH (pHi) regulation were investigated in anoxia-tolerant hepatocytes from goldfish Carassius auratus, and compared to the situation in the anoxia-intolerant hepatocytes from trout Oncorhynchus mykiss. Under normoxic conditions, the pHi of goldfish hepatocytes was regulated by a Na(+)/H(+) exchanger and a Na(+)-independent Cl(-)/HCO(3)(-) exchanger, the latter being a...
متن کاملCloning and characterization of a human electrogenic Na+-HCO-3 cotransporter isoform (hhNBC).
Our group recently cloned the electrogenic Na+-HCO-3 cotransporter (NBC) from salamander kidney and later from mammalian kidney. Here we report cloning an NBC isoform (hhNBC) from a human heart cDNA library. hhNBC is identical to human renal NBC (hkNBC), except for the amino terminus, where the first 85 amino acids in hhNBC replace the first 41 amino acids of hkNBC. About 50% of the amino acid ...
متن کاملExpression of the Na+-HCO3- cotransporter and its role in pHi regulation in guinea pig salivary glands.
Patterns of salivary HCO(3)(-) secretion vary and depend on species and gland types. However, the identities of the transporters involved in HCO(3)(-) transport and the underlying mechanism of intracellular pH (pH(i)) regulation in salivary glands still remain unclear. In this study, we examined the expression of the Na(+)-HCO(3)(-) cotransporter (NBC) and its role in pH(i) regulation in guinea...
متن کاملSodium Coupled Bicarbonate Influx Regulates Intracellular and Apical pH in Cultured Rat Caput Epididymal Epithelium
BACKGROUND The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. METHOD/PRINCIPAL FINDINGS Immunofluorescence staining of pan cytokeratin in the pr...
متن کاملMetabolic and ionic responses of trout hepatocytes to anisosmotic exposure.
Trout hepatocytes exposed to hypo- or hyperosmotic conditions respond by swelling and shrinking, respectively, followed by regulatory volume changes that almost, although not completely, restore cell volume. These anisosmotic conditions have a significant impact on metabolic functions. In hyposmotic medium, oxygen consumption (.VO2) and glucose production rates were significantly reduced, where...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 203 Pt 14 شماره
صفحات -
تاریخ انتشار 2000